
Developer Mode User Guide

Introduction

This document serves as a guide attached to the Regression Failure Triage using ECTB
Parameter Clustering - AMIQ Blog Article. The intention behind it is to provide an insight into
how to correctly set up and use the sandbox environment used to determine the most suitable
clustering methodology. The following examples are for the project case study block, Matrix
Determinant, but can be implemented into any testbench set up with the project’s requirements:

1. Development of the verification environment using ECTB architecture and principles.
2. Implementing a high-level of abstraction, enabling the verification environment to be

governed by a single general sequence. For Matrix Determinant, there are two types of
general sequences: ‘amiq_md_base_seq’ and ‘amiq_md_special_seq’, both of which
completely control all traffic sent to the block.

3. Transparency of values used for all control parameters of a test scenario, by displaying
these in the associated run log, regardless of whether they were defined in the plusargs
file. This is implemented in the ECTB version attached to the project repo.

4. Dependencies on the following non-standard Python packages: NumPy version 1.21.5,
pandas version 1.3.5, Plotly version 5.18.0, Dash version 2.16.1, scikit-learn version
1.3.2. All of these are documented in the README.txt file of the project repo.

Developer Mode Scripts

The scripts used for the sandbox environment are located in the amiq23_md submodule
at the path amiq_pclust/amiq23_md/scripts/development, and are:

● bugs_generator.py -> This script randomly generates bug to error associations, based
on the Excel configuration provided (i. e. template bugs_generator_config.xlsx). The
control knobs for the script are:

○ config -> (string) Path to the configuration Excel file.
○ nof_max_bugs_in_error -> (int) the maximum number of bugs associated with

the same error. Default 2.
○ seed -> (int) generator seed. Default 0.
○ auto_parse -> (bool) if true, the ECTB regression parameter database is

automatically obtained from the generated tests and error model. Running
regressions is not necessary anymore using this knob. Default 1.

○ auto_regression -> (bool) if true, all regression related files (synthetic SVAs, test
plusargs, and regression VRSF) are generated. Used for replicating the user
flow. Default 0.



Example:
$ python3 bugs_generator.py --config bugs_generator_config.xlsx
--nof_max_bugs_in_error 2 --seed 2 --auto_parse 1 --auto_regression 0

● clustering_visualize_sandbox.py -> This script works only if bugs_generator.py was
run with auto_parse true. It is based on the same principle as the project script itself
(regression_analysis.py), but instead directly sources the ECTB regression parameter
database from bugs_generator.py (the sandbox_matrix.xlsx Excel file). It also adds a
way to interactively display the clustering evaluation metric in the GUI.

Setup

The bugs_generator_config.xlsx template Excel file that comes with the project is going
to be the configuration for the bugs_generator.py script. This has three sheets:

● Flags: will be populated with the parameter names and all of their possible values (each
parameter on its own line). Note that if auto_regression is true, the parameter values
must be named "val_Y" (where Y is a positive integer).

Figure 1. Example of populating the “Flags” sheet in bugs_generator_config.xlsx.

● Sequences: will be populated with the sequence names, the number of runs to be
randomly generated for each sequence, the sequence type (just as in SystemVerliog),
and the parameters that are used by the sequence (each sequence on a line).

Figure 2. Example of populating the “Sequences” sheet in bugs_generator_config.xlsx.

● Bugs: will be populated with the desired amount of bugs to be injected into the
testbench, by setting a bug name, the number of flags that associate with the bug
(chosen randomly), and optionally the sequence type through which it can be traced (if
not set, it is chosen randomly). Each bug is defined on a separate line.

Figure 3. Example of populating the “Bugs” sheet in bugs_generator_config.xlsx.



Unset

Figure 4. Example of generated bugs and associated errors.

In this case, N/A means that the sequence type through which the bug can be detected
does not utilize the corresponding parameter, while any means that the parameter is used by
the sequence type, but is not associated with the bug (meaning it can take any value without
influencing).

! Important Note: If the auto_parse knob for the bugs_generator.py script is set to true,
the parameter registering and sequence linkage steps below can be skipped. In the general
sequences that are aimed to be used with the sandbox environment, the abstract verification
parameters have to be registered as strings. The developer has to push all values registered
with ECTB for the verification parameters into a queue of strings called ‘flags’, which can be
done by overriding the ECTB ‘register_all_vars()' function, as shown in Figure 5:

virtual function void register_all_vars();
super.register_all_vars();
reset_pkt_nr_constraints = string_reg("param_A", "val_0");
flags.push_back(reset_pkt_nr_constraints);
matrix_pkt_nr_constraints = string_reg("param_B","val_0");
flags.push_back(matrix_pkt_nr_constraints);
exact_value_constraints = string_reg("param_E","val_4");
flags.push_back(exact_value_constraints);
delay_pattern_constraints = string_reg("param_F","val_3");
flags.push_back(delay_pattern_constraints);

endfunction : register_all_vars

Figure 5. Registering parameters and populating the queue of flags

Also, in the top-level sequence’s body, after all variable declarations, the synthetic SVAs
have to be included, by adding the macro `include “<ECTB_seq_name>_svas.svh”. For
Matrix Determinant, the general sequence named seq_0 of type amiq_md_base_seq should be
included at the top of the body (after variable declarations) `include "seq_0_svas.svh", as
indicated in Figure 6.



Unset

virtual task body();
int num_resets, num_input;
`include "seq_0_svas.svh"

Figure 6. Synthetic SVAs to sequence type linkage

Examples of Developer Flow

A. Auto_regression true

1. Run the bugs_generator.py script.

$ python3 bugs_generator.py --config bugs_generator_config.xlsx
--nof_max_bugs_in_error 2 --seed 2 --auto_parse 0 --auto_regression 1

2. Synthetic SVAs, testcase plusargs files, and ECTB regression VRSF are generated (as
shown in Figures 7, 8, and 9). Run regression as normal.

Figure 7. Example of generated synthetic SVAs file.

Figure 8. Example of generated testcase plusargs files.



Figure 9. Example of generated regression VRSF file

3. Apply regression_analysis.py as normal.
$ python3 regression_analysis.py –path <path/to/reg_dir> [-u] (includes passed runs)

[-g] (generates regression database in csv format)

B. Auto_parse true

1. Run the bugs_generator.py script.

$ python3 bugs_generator.py --config bugs_generator_config.xlsx
--nof_max_bugs_in_error 2 --seed 2 --auto_parse 1 --auto_regression 0

2. Run the clustering_visualize_sandbox.py script.

3. The evaluation metric is displayed interactively in the Dash GUI, indicated by Figure 10.

Figure 10. The evaluation metric displayed in the GUI


